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Introduction
For the 2021 Summit, the Immediate Response Committee of the AI & Pandemic Response
Subgroup commissioned The Future Society (TFS) to develop an updated and upgraded
catalogue of AI initiatives with potential to combat COVID-19 and other future pandemics, and
transform it into a Living Repository. The research builds upon last year’s report, Responsible AI
in Pandemic Response.

An impact assessment has been conducted yielding a subset of initiatives that show promise in
terms of their potential to scale, for the purpose of identifying those that could benefit most from
partnership to deliver on their promise.

The research began in collaboration between The Future Society, the OECD, and GPAI by
applying the OECD Framework for the Classification of AI Systems to classify AI initiatives
based on their technical characteristics. Those associated with the development of AI systems
created or repurposed to aid in COVID-19 responses were invited to complete a survey shared
in a public announcement. A total of 66 initiatives were identified via TFS desktop research and
survey responses.

The Immediate Response Committee then worked with TFS to build upon the OECD
Framework to develop a more impact-focused set of criteria, including:

● Background of the initiative (name, sources, objective/purpose)
● Origin (including organization(s), locality)
● Categorisation (type of approach / AI method)
● Scope (domain, target users/operators and beneficiaries, geographic coverage)
● Data (description of the dataset in use including demographics, target population, size,

collection timeframe, any public access links)

The 66 AI systems have been classified using this framework to create the Living Repository.
This is being shared in an open ‘work-in-progress’ format in reflection of the immediate needs
of the pandemic for those that may find it useful as a resource.

Using these classifications, the Immediate Response Committee has conducted assessments of
initiatives’ intrinsic scalability and their potential to mitigate the current and future pandemics, to
narrow the 66 identified initiatives into a shortlist of 26, of which 11 have initially been selected
as candidates for potential partnerships with the AI & Pandemic Response Subgroup and GPAI
more widely.

In this document, we are pleased to share summaries of the initial selected 11 initiatives. They
include AI systems that have been trained to:

● predict the distances and angles between pairs of proteins’ amino acid residues;
● determine the effectiveness of non-pharmaceutical interventions (NPIs) on COVID-19
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● identify individuals who are at the greatest risk of heightened vulnerability to
COVID-19, based on individuals’ pre-existing medical conditions;

● provide users with personalized daily COVID-19 “risk scores” associated with regular
activities;

● organize both structured and unstructured COVID-19 data into a knowledge graph that
can be navigated and queried to retrieve information;

● provide a country-level risk modeling framework intended to assist the government
and individuals in making informed decisions;

● quickly and accurately detect the presence of COVID-19 in thoracic CT scans;
● model the spread of COVID-19 based on the prevalence of mask-wearing in a

population;
● identify, track, and analyze events associated with COVID-19 via mentions on online

news articles and social media posts;
● aggregate and clean various sources of US pandemic-related raw data to produce

COVID-19 “indicators” for “nowcasting” (situational awareness) and short-term
forecasting;

● allow users to view current occupancy rates of hospitals across the US and
recommendations for intra-state patient transfers based on current occupancy rates.

We now look forward to the progress being discussed at Summit 2021, and will publish an
update including a revised Living Repository and an additional 15 descriptive summaries in
early 2022.

Our intention is that the analysis will then be used to help inform the Immediate Response
Committee’s partnerships approach in 2022, but should also provide a useful tool and model for
the critical evaluation of AI initiatives within the ongoing and in future pandemics.

Researchers tried to make these summaries comprehensive and accurate with information that
was publicly available, but we acknowledge that they may contain errors or details that are
outdated. If you are a developer of one of these initiatives and would like to correct or add
information, please contact the International Centre of Expertise in Montreal on Artificial
Intelligence (“Centre d’expertise international de Montréal en intelligence artificielle”; CEIMIA) at
info@ceimia.org.
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Summaries

AlphaFold
AlphaFold is a deep learning model trained to make predictions of the distances and angles
between pairs of proteins’ amino acid residues, which are then used to construct accurate
predictions of the shapes of proteins [1]. AlphaFold is a product of DeepMind, an artificial
intelligence research laboratory based in the United Kingdom. In August 2020, AlphaFold’s
developers shared the predicted structures of six under-studied proteins associated with
SARS-CoV-2—created with AlphaFold—with the scientific community.

In their blog post announcing the release of COVID-19-related protein structure predictions,
DeepMind researchers shared their desire to contribute to the scientific community’s
interrogation of the functions of viruses and for their model to serve as a hypothesis generation
platform for future experimental work in developing therapeutics [2].

Since their first announcement in 2018, the AlphaFold model has gone through numerous
stages of development. When announcing the release of the six SARS-CoV-2-associated
protein structure predictions, DeepMind referred to their model entered in the 13th biennial
Critical Assessment of Protein Structure Prediction (CASP13), dubbed “AlphaFold v1.0” [2]. This
version of AlphaFold was trained on publicly-available data consisting of approximately 170,000
protein structures from the professionally-curated Research Collaboratory for Structural
Bioinformatics Protein Data Bank (RCSB PDB) [3] and large, open-access databases of protein
sequences derived from genome sequencing projects, such as UniProt [4]. The sequences of
proteins associated with SARS-CoV-2 were also obtained from UniProt.

AlphaFold v1.0’s model consists of two stages: (1) a two-dimensional dilated convolutional
residual network that takes an amino acid sequence and, using training data, outputs the
prediction of distance and torsion between amino acid residues; and (2) a differentiable model
that performs gradient descent using the output of the first stage to optimize the 3-dimensional
shape of a protein towards its lowest energy potential (in other words, closest to equilibrium) [1].

Following the release of the structure predictions associated with SARS-CoV-2 in August 2020,
in July 2021, DeepMind published a validated, redesigned version of AlphaFold’s earlier model
(“AlphaFold v2.0”). This iteration replaced the convolutional neural network in the prior model
with a transformer-based architecture—the “Evoformer”—which treats the prediction of protein
structures as a graph inference problem in 3D space, processing inputs through repeated layers
of a neural network block to produce an array that represents the inputs in a lower dimension.
This new model had the best performance by a significant margin at CASP14 held in 2020 [5].

Upon the publication of the paper describing AlphaFold v2.0’s architecture, Deepmind also
openly released its source code, trained weights, and an inference script to the research
community [6]. It also partnered with European Molecular Biology Laboratory’s European
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Bioinformatics Institute to release the AlphaFold Protein Structure Database, which includes
structural predictions of all of the 20,000 proteins in the human proteome, as well as those from
other biologically significant organisms, such as E. coli, yeast, drosophila, and mice.

The developers identified limitations in predicting parts of the human proteome, such as proteins
that are unable to be accurately modeled with single-chain structure prediction, and must be
modeled in complex or in cellular milieu. They also note a bias towards the human proteome for
health and medicinal research, while other biologically, medically, or economically important
organisms are underrepresented.

The open source nature of this initiative’s source code and the model’s noteworthy accuracy in
predicting protein structures suggests a high potential for impact in pandemic response, as
protein structure prediction is critical for understanding viral biology and pharmaceutical design.

More information can be found in the Living Repository.
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Bayesian hierarchical semimechanistic model
This initiative developed a Bayesian hierarchical semimechanistic model to determine the
effectiveness of non-pharmaceutical interventions (NPIs) on COVID-19 transmission [7]. The
initiative was developed by researchers at the University of Oxford, Australian National
University, the Quantified Uncertainty Research Institute, Harvard University, the University of
Bristol, the University of Manchester, the London School of Hygiene and Tropical Medicine, the
London School of Economics and Political Science, the University of Cambridge, Tufts
University, and Imperial College London. The initiative is presented in an academic paper
published in Science in February 2021 [7].

The rationale behind this initiative was to provide an alternative to simulation studies, which tend
to make strong assumptions that are relatively difficult to validate, by developing a data-driven,
cross-country model that compares national interventions to the subsequent numbers of cases
or deaths within those respective regions.

NPI data were collected across 41 countries from January 22nd to May 30th, 2020. To mitigate
errors, all NPI data were entered independently by two of the authors, using primary sources,
and then manually compared with two public datasets: the Epidemic Forecasting Global NPI [8]
and the Oxford COVID-19 Government Response Tracker [9]. Data on confirmed COVID-19
cases and deaths were obtained from the COVID-19 Data Repository by the Center for Systems
Science and Engineering (CSSE) at Johns Hopkins University [10]. To prevent bias, data were
pre-processed by neglecting COVID-19 case numbers before a country had reached 100 cases,
and fatality numbers before 10 deaths [7].

The model presented in this paper was built upon the semimechanistic Bayesian hierarchical
model developed by Flaxman et al [11], which estimated the effects of NPIs on COVID-19
transmission in Europe. Similar to Flaxman’s approach, this model used COVID-19 case and
death data to make a ‘backward’ inference of the number of new cases for each country, which
was then used to infer daily reproduction numbers [7]. The reproduction number and the
occurrence of NPIs were then used to estimate NPI effects. To account for cross-country
variations in effectiveness, reporting, and fatality rates, as well as uncertainty in the generation
interval and delay distributions, researchers utilized a Markov chain Monte Carlo (MCMC)
sampling algorithm [12] to infer posterior distributions of each NPI’s effectiveness.

The researchers found that NPIs demonstrated highly consistent trends across countries [7].
For instance, closing both schools and universities was consistently highly effective at reducing
COVID-19 transmission, as was banning gatherings of 10 people or fewer, whereas targeted
closures of face-to-face businesses with a high risk of infection, such as restaurants, bars, and
nightclubs, had a small-to-moderate effect. They furthermore found that when most NPIs were
already in place, stay-at-home orders had only a small additional effect; thus, by using effective
interventions, some countries could effectively control COVID-19 spread while avoiding
stay-at-home orders.
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The researchers point out numerous limitations of their approach, such as an inability to factor
in country demographics, regional differences in interpretations or implementations of NPIs, and
a lack of data on some NPIs not captured in this study, which may restrict the feasibility of
scaling up the tool [7]. Some of these limitations may resolve with time, however, if NPIs were to
become more standardized across larger geographies, and as more COVID-19 case and death
data becomes available before and after the implementation of various NPIs.

More information can be found in the Living Repository.
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C-19 Index
The C-19 Index is an open source, AI-based predictive model designed to identify individuals
who are at the greatest risk of heightened vulnerability to COVID-19, based on individuals’
pre-existing medical conditions [13]. The C-19 Index was developed by researchers at
ClosedLoop.ai, a private healthcare software company, and one researcher affiliated at
Healthfirst, a New York-based health insurance company. A research article describing their
models was uploaded to medRxiv in March 2020 [14] and was published in the Journal of
Medical Artificial Intelligence in December of 2020 [13].

In their research article, the researchers note that identifying who is most vulnerable to
COVID-19 complications or death is not straightforward; however, patterns that were emerging
in data from Wuhan and the US (in early 2020) suggested that the risk of death increased with
age, for those who have diabetes, heart disease, blood clotting problems, or have shown signs
of sepsis. Researchers believed that building predictive models based on these known risks
could be useful for outreach campaigns targeted to those most at-risk of severe COVID-19
complications [13].

Researchers used data from two different datasets to train their models: the Center for Medicare
& Medicaid Services Limited Data Set for 2015 and 2016 [15], and a medical claims dataset
containing 2.5 million Healthfirst insurance beneficiaries. Each dataset represented different US
demographics: the former contained data for those over the age of 65 or disabled who receive
Medicare, while the latter contained data from overall healthier adults enrolled in Medicaid.
Cohorts were created from each data set, and then the resulting cohorts were combined, such
that the combined cohort had an age profile consistent with the overall US population [13].

Three different models, which output a person’s “C-19 Index” score—the percentile risk of
near-term severe complications from an upper respiratory infection, were then trained on the
combined cohort’s data: (1) a “survey risk factors” logistic regression model that outputs a
person’s percentile risk score based on responses to a web-based survey; (2) a “diagnosis
history model,” which train gradient-boosted trees in a time-delayed fashion, allowing the model
to use current claims data by simulating the 3-month delay in claims processing that usually
occurs in practical settings; and (3) an “expanded feature model,” a model built within
ClosedLoop—a software system for creating machine learning models—that uses additional
engineered features from peer-reviewed studies (not disclosed in their publication). The key
differences between each model is the number of features each employs, and thus, their ease
of implementation.

The   validation dataset contained 14,000 COVID-19 cases in New York City from February 2020
until mid-May 2020. The logistic regression used the fewest features and delivered the lowest
performance, with an AUROC (Area Under the Receiver Operating Characteristics—a
measurement of a model’s ability to distinguish between classes) of .731. In comparison, both
the diagnosis history model and the expanded features models obtained AUROCs of .810.
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The C-19 Index has already been utilized by at least two healthcare organizations: Medical
Home Network, an Illinois-based accountable care organization [16], and Healthfirst, the
aforementioned New York-based health insurance company . However, authors note several
limitations of their study which impact the feasibility of using this approach on a larger scale: no
real COVID-19 cases were used in the model’s training, the approach relied on claims data
instead of clinical data, and data excluded those under 18 years of age. Therefore, moving
forward, possible technical enhancements could be to validate the proxy outcome and
determine their validity based on COVID-19 data, to build models on COVID-19 vulnerability on
COVID-19 data (without having to use other upper respiratory diseases as proxies), and to test
on data of those under 18 years of age.

More information can be found in the Living Repository.
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COVI
COVI is a research project that culminated in the development of an AI-enabled contact-tracing
mobile application. This application aimed to provide users with personalized daily COVID-19
“risk scores” associated with regular activities (such as taking public transportation and
socializing with friends). These scores were based on users’ demographic and health profiles
[17]. The project commenced in May 2020, led by researchers at Mila (a research institute
specializing in artificial intelligence), Canada, with affiliations including the University of Ottawa,
Universite de Montreal, The Alan Turing Institute, University of Oxford, University of
Pennsylvania, McGill University, Borden Ladner Gervais LLP, The Decision Lab, HEC Montreal,
Max Planck Institute, Libeo, and the University of Toronto.

The primary objective of the mobile application was to help members of the general public make
informed, risk-reducing decisions in a manner that preserved individual privacy [18]. COVI
extends beyond a contact-tracing mobile app by combining contact-tracing information with
other user data (e.g., user demographics, health information, symptoms) to predict daily
personal risk factors for each user. In addition, COVI translates these personal risk scores into
recommendations based on public health guidelines. Finally, collected data is used to define
epidemiological models and intervention simulations, which could then be shared with public
health officials to help them preempt resurgence of the virus and inform reopening strategies
[18].

COVI was developed to utilize a variety of data from users, all of which would be obtained by
consent. Upon opening the app for the first time, users would be provided with an overview of
how the app works and the privacy implications of sharing data with COVI. It then would ask for
consent for the collection, use, and disclosure of IP-based geolocation history,   random “contact”
IDs (generated when a phone is within 2 meters of another phone with COVI installed), and
users’ current risk levels — all necessary for the app to function properly [18]. If a user were to
start presenting symptoms or be diagnosed for COVID-19, they could report accordingly. Then,
contacts made with that user within the past 14 days would be notified, and the
symptoms/diagnosis would be factored into the computation of the contacts’ risk scores [18].

COVI also asks for consent for collection and use of data pertaining to a user’s age, sex, health
conditions, active symptoms, ongoing relevant behavior, coarse geographical location, and app
analytics information; all of these data (except analytics information) would be fed into the
application’s risk assessment function, which would compute locally on the user’s device [18].
Data remains on a user’s device unless the user opted to allow COVI Canada to receive
encrypted, pseudonymized data packets and heat-map information (in aggregated form), which
would be used by COVI’s underlying ML model and assist in epidemiological research by
government or other third parties [18].

Once collected, data can be used to train deep learning ML models to predict contagiousness
risks, and to fit an epidemiological model [18]. COVI deploys architectural scaffolding for deep
learning around a Transformer architecture, which draws upon information pertaining to
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demographics, behaviors, health conditions, symptoms, and contact with other users [19] to
dynamically refine the ML model. In addition, the data shared by the app users also enables
AgentSim, an agent-based simulator that offers flexibility in designing contact-tracing and
epidemiological simulations, to identify new patterns and specific parameters (such as distance,
sex, and age) to model how the virus spreads [20].

Design and development of COVI had been finalized, and Mila was aiming for it to be endorsed
for use by the Canadian government, in early June of 2020. However, in spite of putting forward
a demonstrated effort towards building a “privacy-conscious app” [17] and fostering public trust
by explaining the rationale behind their app design decisions in their white paper, the Canadian
government decided to endorse a different application which collected less personal data, citing
privacy concerns by provincial and territorial leaders [21].

COVI’s code and documentation remain accessible on Mila’s website (hosted on GitHub [19]
and arXiv [18]) as open-source, with a non-exclusive and royalty-free license, “  should [others]
wish to deploy an AI-enabled health app inspired by our approach” [17]. The open-access
nature, human-centric privacy protocols, and consensual use of encrypted, pseudonymized user
data suggest that this tool has a high potential to scale to other geographies.

More information can be found in the Living Repository.
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COVID-19 Hospital Capacity Management
COVID-19 Hospital Capacity Management is an publicly-accessible online dashboard that
allows users to view current occupancy rates of hospitals across the US and recommendations
for intra-state patient transfers based on current occupancy rates. It also provides an interactive
tool to modify model parameters (eg. patient type, transfer budget, transfer distance threshold)
to obtain more customized recommendations within any state or hospital system within the US
[22]. The tool was developed by a team from Johns Hopkins Center for Systems Science and
Engineering and Malone Center for Engineering in Healthcare, and is affiliated with the Center
for Data Science in Emergency Medicine and the Department of Civil and Systems Engineering
at Johns Hopkins University [23]. The initiative was first publicly announced on October 27,
2020 [24] and the team’s first related academic preprint was uploaded to arXiv on November 6,
2020 [25].

In their preprint, the developers state that the motivation behind their effort was to minimize
resource shortages, which would, in turn, improve the overall quality of patient care and prevent
early discharges and cancellations of elective surgeries [25]. They note a few instances of
patient transfers occurring ad-hoc in the COVID-19 pandemic, but remark that treating this issue
at a more protracted, system level—across hospitals, counties, and states—will spur more
efficient resource use. They also recognize the alternative approach of hospitals individually and
reactively responding by creating surge capacity, but point to studies suggesting that such an
approach can lead to a reduced quality of care compared to hospitals working in coordination to
make use of existing resources.

For data on past hospital occupancy and COVID-19 hospitalizations, the dashboard relies on
statistics provided by the US Department of Health and Human Services [26]. To make future
projections, the team uses the US Center for Disease Control’s county-level forecasts of
COVID-19 cases [27]—an ensemble of models from many forecasting teams, which the
researchers behind COVID-19 Hospital Capacity Management then disaggregate to the hospital
level.

To make recommendations for patient redistribution, the researchers constructed a series of
linear optimization (linear program and mixed-integer linear program) models to solve a
multi-period demand problem: “given a set of nodes and time periods, with nominal demand (ie.
COVID-19 patients) at each node during each period and fixed capacity at each node,
determine the optimal quantity of demand to transfer between each pair of nodes during each
time period” [25]. To better reflect constraints in reality, they extended the model by adding a
number of parameters to each node, including the type of patient (ICU vs acute care), the
per-transfer hospital budget, the total transfer budget, percentage of capacity reserved for
COVID-19, transfer distance limits, and lengths of stay, among others. On the COVID-19
Hospital Capacity Management site, the output of the models—recommended intra-state patient
transfers—are presented on dynamic graphics for each US state. In their paper, the researchers
also presented an analogous multi-period method to model critical redistribution (rather than
patient transfers), however, this was not presented on their dashboard.
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The online dashboard remains accessible and up-to-date with data updated on a weekly basis,
and the source code publicly accessible on their GitHub repository [28]. Limitations to scaling up
this approach include the accessibility and quality of data pertaining to present hospital capacity,
the aforementioned related parameters, and the accuracy of forecasts of COVID-19
hospitalizations within a given geographical region.

More information can be found in the Living Repository.
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COVIDcast
COVIDcast is a site that aggregates and cleans various sources of US pandemic-related raw
data to produce COVID-19 “indicators,” which are intended to inform decision making by a
broad range of users—public health authorities, the healthcare industry, the public and private
sectors, epidemiologists, data journalists, and the general public [29]. COVIDcast was created
by the Delphi Research Group at Carnegie Mellon University—one of the US Centers for
Disease Control and Prevention’s (CDC) Influenza Forecasting Center of Excellence [30]—with
support from Amazon, the US CDC, Change Healthcare, the US Defense Threat Reduction
Agency, Facebook, Uptake, Optum, and Google.org [29]. In addition to data from the
aforementioned sources, the group also uses their own indicators to create forecasting models
at the US state and county level. COVIDcast was launched in May of 2020 and its first
academic paper was published on June 25th, 2021 [31].

The Delphi Research Group’s motivation is to develop the theory and practice of epidemic
tracking and forecasting. In doing so, they procure data streams that reflect epidemic (or
pandemic) activity, define relevant indicators, and make them available for public consumption.
They then use these indicators for “nowcasting” (situational awareness) and short-term
forecasting [29].

COVIDcast collects and shares a wide range of COVID-related data, categorized into “public
behavior,” “early indicators,” and “late indicators.” Public behavior includes: the frequency of bar
and restaurant visits, obtained via SafeGraph; the degree to which people wear masks and are
willing to get vaccinated, obtained via a survey administered through Facebook; and Google
searches pertaining to COVID-19 symptoms, obtained from Google. Early indicators include:
COVID-19-related doctor visits provided by partnering health system organizations, such as
Change Healthcare; and COVID-19 symptoms present in individuals or communities, obtained
via Facebook surveys. Late indicators include: COVID-19 antigen test positivity rates, provided
by Quidel; hospital admissions data, provided by partnering health system organizations; and
COVID-19 cases and deaths, provided by Johns Hopkins University and USAFacts. Even
though COVIDcast did not launch until May of 2020, they were able to collect data
retrospectively beginning in February of that year, and they continue to collect and update data
on a nearly daily basis.

The Delphi Research Group aggregates, cleans, and then displays these data on the
COVIDcast site throughan interactive dashboard. On the dashboard, users may browse
indicators’ daily trends, or explore correlations between indicators, at the US state or county
level. Using their own indicators, the Delphi Research Group implemented time series models at
the state and county levels. At the state level, a basic autoregressive time series model was
developed using only two features: COVID case and death counts. At the county level, a
quantile regression model was developed using four features: case counts, self-reported
symptom rates, doctor’s visits rates, and population [32]. These models are included in an
ensemble model developed in collaboration with the Reich Lab at the University of
Massachusetts, and accessible at the COVID-19 Forecast Hub [33].
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The COVIDcast dashboard is updated with new data nearly daily, and indicators are publicly
accessible via an API [34]. The Delphi Research Group also tracks and reports (via their API)
revisions made to datasets [35]. As of July 2021, the API was reported to have been accessed
by “thousands of users every day, requesting hundreds of thousands of pieces of information”
[36]. COVIDcast’s indicators have reportedly been used by numerous organizations responding
to the pandemic, including COVID Act Now, COVID Exit Strategy, DeepCOVID, and the Institute
for Health Metrics and Evaluation (IHME). Furthermore, the COVID-19 Forecast Hub’s
ensemble model, which integrates Delphi Research Group’s forecast models, serves as the
basis of the US CDC’s COVID-19 forecasting communications [29].

In terms of technical scalability, some COVIDcast indicators may be difficult to repurpose for
geographies outside of the US. For instance, some indicators that rely on proxy measurements
for behaviors in the US—mobility data collected via smartphone activity, survey data obtained
via surveys on social media sites, and health care data obtained from health system
organizations—may be unsuitable in areas where smartphones are not as widely used, social
media use or literacy are less pervasive, and health care infrastructure is relatively weak.
COVIDcast’s forecasting models, however, do not rely on all of their indicators; the state-level
autoregressive time series model, for instance, uses only COVID-19 case counts and death
counts. Though COVIDcast relies on Johns Hopkins University and USAFacts for these data
within the US, the WHO is a relatively accurate and reliable source of data for such information
from other countries (as this reporting is mandated for the 194 WHO member states by the
International Health Regulations of 2005) [37]. Thus, an autoregressive time series model of this
type may be more easily repurposed for other geographies.

More information can be found in the Living Repository.
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GeoSpark Analytics Hyperion COVID-19 Live Dashboard
Disclaimer: Details pertaining to technical specifications of this tool were not publicly available; the
information below was obtained from blog posts on the GeoSpark Analytics site. Furthermore, whereas
the tool was accessible to the general public in November 2020, at some point before October 2021,
access was restricted to those with an ArcGIS account associated with the Geospark Analytics team.

The Hyperion COVID-19 Live Dashboard is a dashboard that uses machine learning to identify,
track, and analyze events associated with COVID-19 via mentions on online news articles and
social media posts [38]. This tool was developed by GeoSpark Analytics, a private computer
software company, in partnership with Esri, a private geographic information systems software
supplier (most famous for their product, ArcGIS). The dashboard was publicly announced on a
blog post in April 2020, but was built upon the GeoSpark Analytics Hyperion platform, which
was developed prior to the COVID-19 pandemic [39].

Specific information pertaining to the data or models used by the Hyperion COVID-19 Live
Dashboard are not publicly available. A blog post describing the Hyperion platform, upon which
the dashboard was built, describes three functionalities: (1) categorizing disparate forms of
information into classes of activities using a machine learning model that learns patterns in
unstructured data to automatically recognize and categorize data from social media, news
media and other sources into themes such as social unrest, conflict and terrorism; (2) modeling
patterns of human activity by evaluating news, social media, and other information in the
location of the anomaly; and (3) continuously assessing levels of “stability,” by comparing
current activity against long-term trends (which are used to define “normalcy”) within geographic
regions [40]. In a separate blog post, they illustrate how their dashboard has been built with
these functionalities [39]. However, they do not describe exactly what data are utilized to
perform these tasks; details pertaining to the machine learning models employed are also not
available.

Geospark Analytics claims that their technology detected anomalous activity levels in Wuhan,
China and categorized them as a disease outbreak on December 31st 2019, eight days before
the WHO announced concern over the pneumonia outbreak [40]. In April 2020, they claimed
that their dashboard had been viewed more than 15,000 times in the previous month, and that it
had been integrated into other applications [39], but did not describe in detail what these
applications were.

As recently as November 2020, the dashboard was accessible to the general public on their
website. As of October 2021, however, it appears that users need to have an ArcGIS account
associated with the GeoSpark Analytics organization in order to access the dashboard.

More information can be found in the Living Repository.
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IBM COVID-19 Deep Search
The IBM COVID-19 Deep Search platform organizes both structured and unstructured
COVID-19 data into a knowledge graph that can be navigated and queried to retrieve
information. The Deep Search platform was developed by IBM Research Europe, based in
Zürich, Switzerland, in the first half of 2020, by members of the Scalable Knowledge Ingestion
group [41].

IBM’s Deep Search access page states that the purpose of the platform is to allow scientists
and academics to “unlock the knowledge” of published unstructured and structured data
pertaining to COVID-19 [42]. Users can do so by either navigating the knowledge graph
manually or building query workflows to extract specific answers from the data.

Deep Search incorporates data from various unstructured and structured data sources.
Unstructured data is obtained via the COVID-19 Open Research Dataset (CORD-19) [43], a
large resource of scientific papers on COVID-19 and related historical coronavirus research
sourced from PubMed Central (PMC) [44], the World Health Organization (WHO) COVID-19
Database [45], as well preprints from bioRxiv, medRxiv, and arXiv [46, p. 19]. Structured data
included pharmaceutical and genetic databases from DrugBank [47] and Genbank [48], as well
as clinical trials from Clinicaltrials.gov [49] and the World Health Organization International
Clinical Trials Registry Platform [50]. In total, the platform is claimed to have ingested 158,524
COVID-19-related papers from the aforementioned sources (as of October 4th, 2021) [51], and
the resulting knowledge graph contains approximately 4 million nodes and 50 million edges [42].

Deep Search is an integration of two IBM technologies: Corpus Conversion Service (CCS) and
Corpus Processing Service (CPS). The development of both tools preceded the COVID-19
pandemic (IBM notes their “extensive use” in the materials science, automotive and energy
industries) but were combined and made accessible to support pandemic response. CCS is a
cloud-based platform that allows users to convert PDFs or bitmap documents into a structured
representation of the original data. CCS parses documents (using optical character recognition
to parse images), applies ML models on parsed documents to assign semantic labels to
content, and reassembles documents into a machine-readable data format, such as JSON [52].
CPS then integrates this data into a knowledge graph, allowing users to navigate structured
data manually on the knowledge graph interface, execute queries for specific information, and
delve more deeply into specific topics by accessing source documents [42].

Access to Deep Search is granted to scientists and academics. Those interested in using the
tool may apply for access on the IBM site [53], and according to IBM, there are 647 registered
users, as of October 18, 2021.

According to IBM, CCS is capable of ingesting 100,000 PDF pages per day on a single server
with an accuracy above 97%. This capability to structure, parse, and navigate large amounts of
scientific data suggests a high potential for Deep Search to scale into areas of research with
large amounts of published (or preprinted) research and accessible data.
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More information can be found in the Living Repository.
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Johns Hopkins US Risk Model
The Johns Hopkins US Risk Model is a county-level COVID-19 risk modeling framework
intended to assist the US government and individuals in making informed decisions. The project
was announced in September 2020 by researchers at Johns Hopkins Center for Systems
Science and Engineering, with funding from the US National Science Foundation, National
Institute of Allergy and Infectious Diseases, and NASA [54].

In a blog post announcing this initiative, researchers shared that the goal of their modeling is to
identify at-risk populations and to learn the locations and attributes of those that are most
exposed to risk of infection and death from COVID-19 [54]. To this end, researchers claim to
have constructed their risk-modeling framework using a “flexible approach” that would allow
them to model different risk indicators for different use cases [54]; however, a more in-depth
explanation of how this was achieved is not provided.

In building the risk modeling framework, the initiative relied on US epidemiological, mobility, and
demographic data from a number of sources [54]. Epidemiological data are drawn from the
Johns Hopkins COVID-19 Data Repository, which aggregates authoritative, publicly-available
COVID-19 case, death, and recovery rates from across the globe at various levels of
granularity—from country-wide to city-wide, depending on availability of data [10]. Mobility data
were sourced from mobile phone usage data and provided by SafeGraph. It appears, however,
that while SafeGraph provided social-distancing metrics for free at the peak of the pandemic,
such data have now been wrapped into their Weekly Patterns product, for purchase [55]. Both
population and health indicators were gathered from the US census (population totals,
demographic percentages, and age breakdowns), County Health Rankings (smoking
percentages, poverty, and chronic disease), and the Definitive Healthcare Dataset published by
ESRI (Statistics on hospital beds and availability) [54].

Models developed for forecasting COVID-19 risks at local, state, and national level use different
statistical methodologies, such as multiple linear regression, logistic regression, random forest
regression/classification, and curve fitting [54]. Researchers explored techniques that could
further improve predictive capabilities, such as ensemble approaches, input clustering, and
deep learning [54]. They claimed to have modeled several different aspects of the outbreak,
including cases and deaths over different time horizons, case and death curves’ deviations from
current trends, case and death rates per person, risk categories based on time-dependent rates
of change, and categorical epidemiological classifications [54]. Details describing which sets of
data were used for any particular model were not disclosed.

This initiative’s site displays a map that visually compares projected quantiles of new cases in
each county during the first two weeks of August 2020 (output from the model) to observed
cases reported, with striking similarities [54]. However, it is unclear whether this initiative is still
under development, whether it is or was used and by whom, and what the process is for
obtaining access to the model or its predictions. It is difficult to assess the technical scalability of
this tool for numerous reasons, including the ambiguity with respect to the licensing of this tool,

20

https://www.zotero.org/google-docs/?Mf3CSP
https://www.zotero.org/google-docs/?FmdjIX
https://www.zotero.org/google-docs/?RsCSnc
https://www.zotero.org/google-docs/?tEgMoB
https://www.zotero.org/google-docs/?3i0efh
https://www.zotero.org/google-docs/?eg2gWB
https://www.zotero.org/google-docs/?g5EUtr
https://www.zotero.org/google-docs/?mJ55H8
https://www.zotero.org/google-docs/?v4OliU
https://www.zotero.org/google-docs/?LtafgX
https://www.zotero.org/google-docs/?14jL3e


the minimum amount of data required for any particular model, the accessibility of its data
(namely, mobility data which is no longer available for free), and the quality of the required
datasets at different geographic scales from across the globe.

More information can be found in the Living Repository.
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RADLogics Deep Learning CT Image Analysis
RADLogics Deep Learning CT Image Analysis is an AI-assisted tool designed to quickly and
accurately detect the presence of COVID-19 in thoracic CT scans [56]. The tool was developed
by RADLogics, a healthcare software company based in New York, USA and Tel Aviv, Israel [57]
with support from Tel-Aviv University, Affiliated Taizhou Hospital of Wenzhou Medical University,
Mount Sinai Hospital and The University of Maryland School of Medicine [56]. The first
academic article associated with this tool was uploaded to arXiv on March 10, 2020 [56].

RADLogics Deep Learning CT Image Analysis was developed early in the COVID-19 pandemic
to respond to the growing need to quickly evaluate large numbers of thoracic CT scans for
COVID-19 detection, measurements, and the tracking of disease progression.

The model was trained on 50 thoracic CT scans of patients in China, collected between January
and February 2020, which were diagnosed by a radiologist as suspicious for COVID-19 [56].
The cases were extracted by querying a cloud picture archiving and communication (PACS)
system for cases that were referred for laboratory testing. Each 2D slice was annotated as
normal (n=1036) versus abnormal (n=829).

The Deep Learning CT Image Analysis tool consists of two subsystems that analyze thoracic
images at a 3- and 2-dimensional level [56]. Subsystem A is a 3D analyzer for nodules and focal
opacities, implemented with off-the-shelf software. Subsystem B detects coronavirus
abnormalities using a 2D deep-learning model built on a deep convolutional neural network
architecture with ResNet-50 (pre-trained using the ImageNet dataset [58]). Each subsystem
makes predictions independently and the overall classification (the “corona score”) is computed
based on the ratio of slices determined to be COVID-19-positive out of the total slices of lung
images from the outputs from each subsystem.

The Deep Learning CT Image Analysis tool’s classification accuracy was tested on 107 thoracic
CT scans—56 COVID-19-positive patients confirmed by RT-PCR, and 51 patients without any
abnormal findings in a radiologist’s report—and achieved an AUC of 0.996 (95%CI: 0.989-1.00)
[56]. Since this article was uploaded to arXiv in March of 2020, it is not entirely clear whether or
how often the tool has been updated, or to how many hospitals the tool has been deployed.

More training and validation would seem beneficial for assessing the transferability of this tool.
The training dataset could use a wider variety of clinical data, a larger-scale validation could be
conducted and peer reviewed, and the tool’s capability to distinguish between COVID-19
pneumonia and non-COVID-19 pneumonia could be evaluated (as it is not covered by the
available article). Furthermore, instructions for accessing the Deep Learning CT Image Analysis
tool are not public-facing; it appears as though interested users need to contact RADLogics
directly for access. Access to other RADLogics medical imaging tools require purchasing
credentials to install or access (via the cloud) RADLogics’s patented workflow software; we
assume this to be the case for this tool as well.
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More information can be found in the Living Repository.
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Universal Masking is Urgent in the COVID-19 Pandemic: SEIR
and Agent Based Models, Empirical Validation, Policy
Recommendations
Universal Masking is Urgent in the COVID-19 Pandemic: SEIR and Agent Based Models,
Empirical Validation, Policy Recommendations is a preprinted research article [59] and an
associated online, interactive, agent-based simulation [60] that models the spread of COVID-19
based on the prevalence of mask-wearing in a population. The researchers involved are
affiliated with the Hong Kong University of Science and Technology, the International Computer
Science Institute, Ecole de Guerre Economique, the University of Cambridge, Manifold
research, University College Longon, ELU AI Ltd, the Royal Free Hospital, London and the
Population Research Institute at The Family Federation of Finland. Both the research article and
online masking simulator became accessible in April 2020.

The objective of this study was to evaluate the effectiveness of mask-wearing in preventing the
spread of COVID-19 with new theoretical models and empirical data-analysis techniques.
Researchers aimed to build a base of evidence to support urgent implementation of universal
masking in regions that had not yet adopted it as policy or as a broad cultural norm.

The research article presents two models for predicting the impact of universal face mask
wearing upon the spread of the SARS-CoV-2 virus during the pandemic: a stochastic, dynamic,
network-based, compartmental, susceptible-exposed-infectious-recovered (SEIR) approach;
and an individual agent-based modeling (ABM) Monte Carlo simulation [59]. For the former
approach, researchers used a SEIR model implemented on a stochastic dynamic network,
rather than a deterministic SEIR model, as it more closely represented interactions between
individuals in a large population. Parameters were tuned to model different degrees of social
distancing, lockdown stringency and mask wearing, and the empirical characteristics of
COVID-19 spread as documented in the “SEIRS+” COVID-19 notebooks [61]. For the latter
approach, researchers created a square wraparound two-dimensional environment, within
which a population of individuals could exist in one of four SEIR states. The wraparound feature
allowed the environment to represent an arbitrarily large space, giving more accurate dynamics
without boundary effects from small spaces. Parameters were tuned to best approximate known
COVID-19 dynamics, and the impact of masking was modeled by allowing for variation in mask
wearing and mask characteristics, with mask transmission rate (T) and mask absorption rate (A)
denoting the proportion of viruses that are stopped by masks during exhaling (transmission)
versus inhaling (absorption), respectively [59].

The SEIR and ABM predictive models demonstrated that: (1) near-elimination of COVID-19
transmission when least 80% of a population is wearing masks, versus minimal effect on
transmission when only 50% or less of the population is wearing masks, and (2) a significant
impact when universal masking is adopted early (by day 50 of a regional outbreak), versus
minimal impact when universal masking is adopted late (after day 50) [59].
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To validate their models, the researchers compared their results with what little (at the time)
historical macro-scale empirical data were available. They collected a data set describing the
“degree of success” in managing COVID-19 by countries or regions and by the prevalence or
enforcement of universal masking. The dataset contained the number of detected COVID-19
cases from Jan 23 to April 10, 2020 and the characteristics of universal masking culture and/or
universal masking mandates or government recommendations within 38 countries/provinces in
Asia, Europe, and North America with similarly high levels of economic development. This
empirical data validated the predictive models’ findings for the need for universal and early
masking.

Since this research involved predictive, simulated models, it would be relatively easy to
reproduce: models could be tuned to more accurately simulate COVID-19 spread, considering
the far greater amount of empirical data on COVID-19 variant characteristics and on
geographical masking culture/mandates/recommendations than when the study was initially
conducted in April 2020. There also exists a much greater amount of COVID-19 transmission
data against which these models may be validated. It should be noted, however, the degree of
uncertainty with regards to the influence that a larger base of evidence would have in changing
norms or policies concerning mask wearing.

More information can be found in the Living Repository.
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